DEFINING ANIMAL BIOSAFETY LEVEL 3 AND BSL3 AG

Robert Heckert DVM, PhD, CBSP Robert Heckert Consulting, LLC

www.safevet.com

ABSL-3

- Suitable for work with animals infected with indigenous or exotic agents that present the potential of aerosol transmission and of causing serious or potentially lethal disease [in humans] (BMBL 5)
- Facility, safety equipment, and practices applicable to clinical, diagnostic, research, or production facilities in which work is done with indigenous, or exotic agents with a potential for transmission, and which may cause serious and potentially lethal infections, or grave economic consequences if released (Applied Biosafety Vol. 12, No. 3, 2007)

ABSL-3/BSL3 Ag

- Primary hazards/risk:
 - Exposure to infectious materials to humans and animals in the vivarium
 - Escape of the agent to the environment
- Emphasis on primary & secondary barriers to protect:
 - Vivarium staff & animals in contiguous areas
 - The community of humans and animals
 - The environment

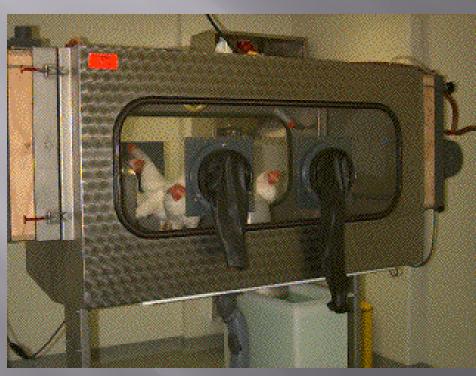
ABSL 3 Containment Levels

- ABSL 3 for work with livestock pathogens of low consequence - described in BMBL 5
- ABSL 3 enhanced for work with livestock pathogens of high consequence in a primary containment device - described in Appendix D, Part III of BMBL 5 and ARS 242.1
- BSL3 Ag for work with livestock pathogens of high consequence where the <u>room is the</u> <u>primary containment</u> described in Appendix D, Part II and of BMBL 5 and ARS 242.1

High Consequence Livestock Agents

- African swine fever virus
- Avian influenza virus (highly pathogenic)
- Classical swine fever
- Foot and mouth disease virus
- Lumpy skin disease virus
- Contagious bovine pleuropneumonia
- Contagious caprine pleuropneumonia
- Newcastle disease virus
- Peste des petits ruminants
- Rift Valley fever virus
- Rinderpest virus

ABSL 3 and ABSL 3e Primary Barriers and PPE


Animal Caging

- Increase infectious pathogen containment with (partial or full) containment caging systems as per risk assessment.
 - Eg: Rodent-filtered top caging, inward flow ventilated enclosures, HEPA-filtered primary barrier systems appropriate to species
- When primary containment caging can not be used the animals are then considered "loose-housed" and personnel must use additional PPE and increased secondary containment.

Poultry Isolator

Ventilated Caging Systems

Respiratory Protection

Primary Barriers and PPE

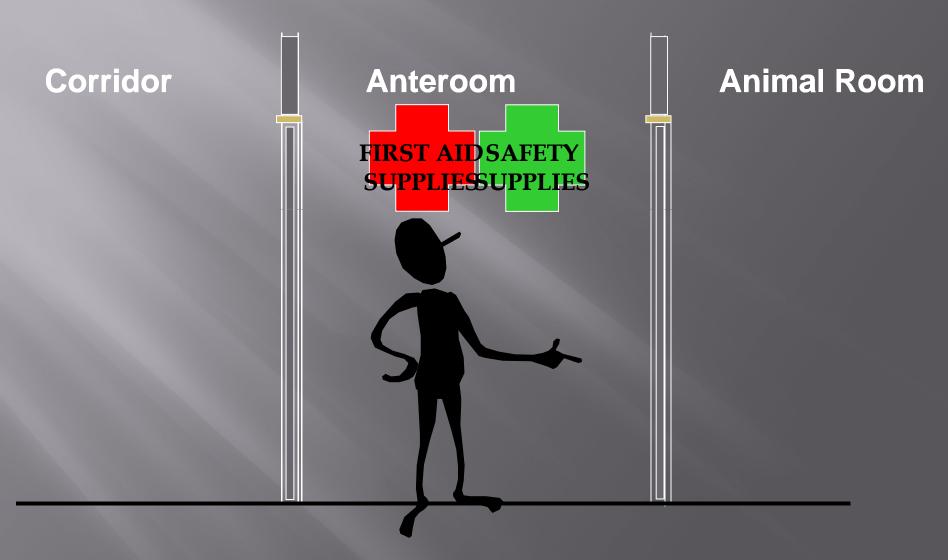
- All ABSL-3 work should done in a primary barrier
- All procedures (agent, animal, sampling, necropsy, etc) with biohazard must be conducted in a primary containment device when practical
 - Eg: Harvesting of tissues / fluids from infected animals or eggs, intranasal inoculations, etc.

Vivarium Facilities

Primary Barriers

Exhaust HEPA filtered air from a certified Class II BSC can be recirculated into the **Typical Class II** lab

Animal in BSC



Vivarium Facilities Secondary Barriers

- Doors must be self-closing and lockable.
- Must be separated from general traffic flow.
- Access restricted by two self-closing doors.
- Clothing change room (anteroom) may be between these two doors.
 - *ABSL3 Shower* <u>optional</u> (based upon RA)
 - *BSL3e Shower mandatory out of the animal rooms*
 - BSL3 Ag Shower <u>mandatory</u> out of the animal rooms <u>and</u> main building

Double door Entry

Entry/Exit

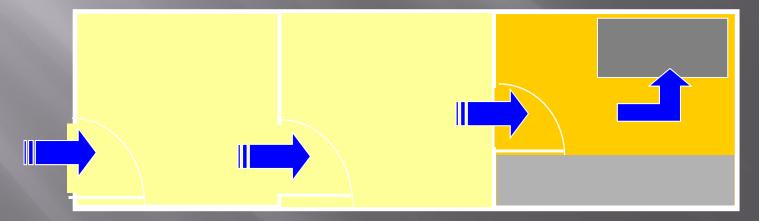
Change room

Vivarium Facilities Secondary Barriers

- Animal rooms must have a sink for hand washing
 - That is hands-free or automatically operated
 - That is located near the exit door
 - When vivarium is segregated into different zones, a sink must be available for hand washing in each zone.
 - Body shower may double as a sink out of BSL3 Ag

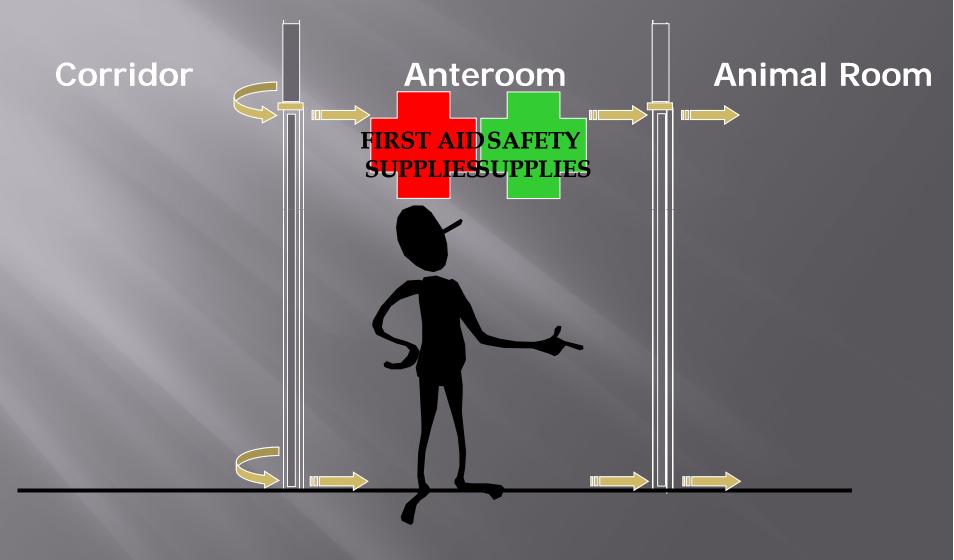
Vivarium Facility Construction Secondary Barriers

- Facility must be easily cleanable.
 - No rugs or carpets
 - Seams, floors, walls and ceiling surfaces must be sealed
 - All penetrations sealed
 - Doors and air vents must be capable of being sealed for decontamination
 - BSL3 Ag has bubble-tight dampers


Vivarium Facility Ventilation Secondary Barriers

- A ducted ventilation system is required that:
 - Will not reverse airflow in failure conditions
 - Disperses building exhaust away from building supply air intake
 - Provides for a visual monitoring device which confirms directional airflow at lab entrance

Vivarium Facility Ventilation Secondary Barriers


- Ducted system provides sustained directional air flow from "clean" to "potentially contaminated" areas
- Series of negative pressure gradients

Vivarium Room Integrity

- ABSL3
 - Room is leaky but capable of being sealed
- ABSL 3 enhanced
 - Room is tight
 - Tested for integrity by soap bubble test
 - Has controlled make up air supply (e.g. around or through doors)
- BSL3 Ag
 - Room is air tight
 - Tested by pressure decay test
 - No leaks around doors

Supply Air Movement

Air Pressure Resistant (APR) Doors

Air Inflatable Gasket APR door

Compressed Gasket APR door

Vivarium Air Handling

- ABSL 3
 - HEPA exhaust filter is <u>optional</u> based on RA
- ABSL 3 enhanced
 - HEPA exhaust filter is <u>mandatory</u> and duct work pressure decay tested
- BSL3 Ag
 - HEPA exhaust filter <u>mandatory</u>, duct work pressure decay tested, with fan interlocks and bubble-tight dampers <u>or</u> HEPA filters on the supply
 - HEPA filters in series and parallel on exhaust and parallel on supply

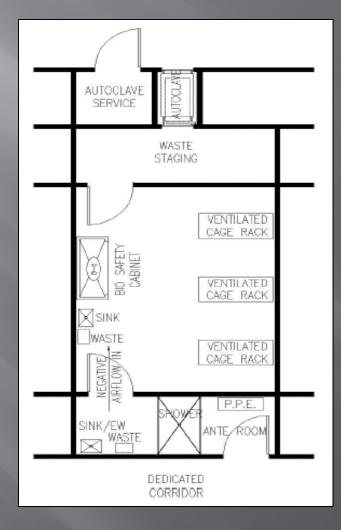
Vivarium Liquid Waste Handling

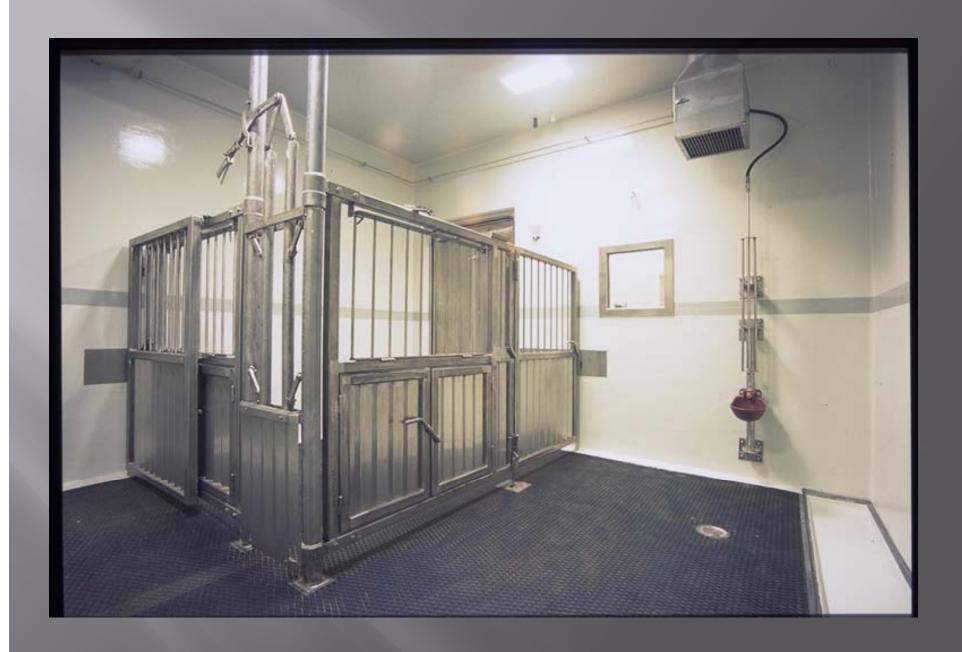
- ABSL 3
 - Floor drains maintained and filled with disinfectant, treatment dependent upon RA
- ABSL 3 enhanced
 - Liquid effluent must be captured and treated
 - Floor drains are discouraged
- BSL3 Ag
 - As above, but to a validated EDS that can handle large amounts of liquids and some solids
 - Contained piping (single or double walled)

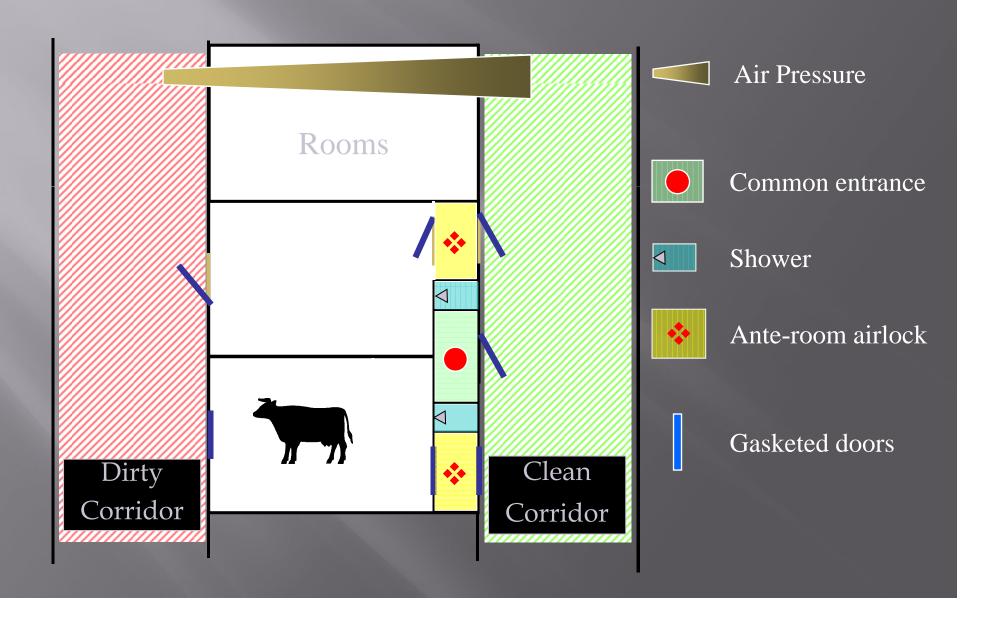
Liquid Waste Cooker

Vivarium Solid Waste Handling Secondary Barriers

Autoclaves or other validated method for decontamination should be available that is convenient to the animal room.


Animal Use & Disposal


- Large animal rooms with configurable penning
- Necropsy rooms equipped to accommodate large farm animals.
- Safe disposal of the large carcasses by pathological incinerators, or other approved tissue disposal methods



ABSL 3 Facility

BSL3 Ag Room Layout

ABSL 3e versus BSL3 Ag

- When do I need one vs. the other?
 - BSL3 Ag is needed ONLY when working with 11 select agents and the room is the primary containment
- So how is BSL3 Ag different than ABSL3 enhanced?
 - Pressure decay testing of the animal room walls (completely sealed animal room)
 - Extra HEPA filtration of the exhaust
 - Extra shower upon main building exit

Summary

- Work with high consequence Ag agents in the laboratory does NOT require BSL3-Ag containment
- Work with loose-housed animals with some (11) Ag agents where the room become the primary containment requires BSL3-Ag
- An onsite risk assessment is vital to determining the level of containment required to work with Agriculture agents of concern.

THANK YOU AND ACKNOWLEDGEMENT TO ALL BIOSAFETY COLLEAGUES THAT PROVIDED SLIDES

