PRRS: Science, Application and Risk Assessment

Scott Dee DVM MS PhD Dipl, ACVM Swine Disease Eradication Center

Disclosure of funding and in-kind

- USDA NRI PRRS CAP 1 and 2
- National Pork Board
- MN Pork Board
- MN Rapid Agricultural Response Fund
- Preserve International
- Midwest Microtek
- Swine Disease Eradication Center partners

SDEC partners

Corporate members

- PIC
- Genetiporc
- Boehringer-Ingelheim
- Pfizer
- Novartis
- Camfill Farr/Filtration Systems Inc.
- Noveko
- Clarcor

Practice members

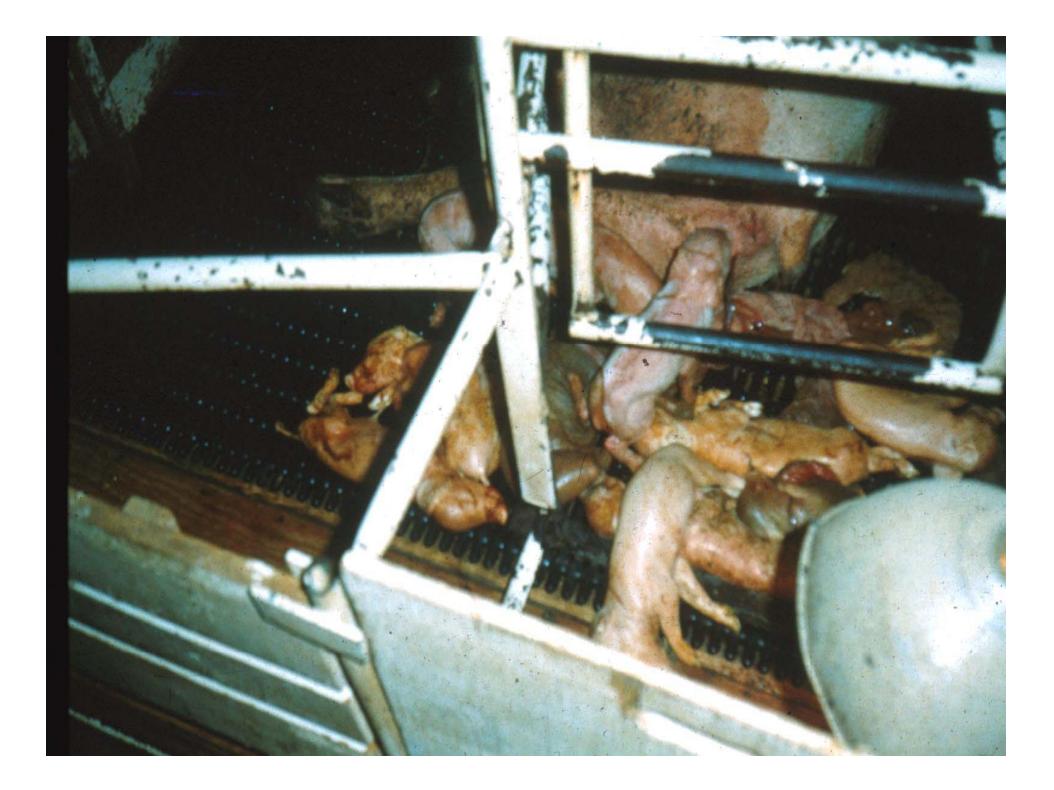
- Pipestone Vet Clinic
- Fairmont Vet Clinic
- Swine Vet Center
- Clinique Demeter
- Carthage Veterinary Service
- Cannon Valley Veterinary Clinic
- Japanese Association of Swine Veterinarians

Disclosure: Air Filtration

- I do not
 - Receive royalties or commissions on the sales of filters or filtration equipment.
 - Have patents on filtration inventions.
 - Have research contracts or consulting agreements/retainers with filtration/equipment companies.

Topics

- 1. Overview of PRRSV
- 2. Aerobiology of PRRSV
- 3. Air filtration: A means to reduce risk


1. Overview of PRRSV

Porcine reproductive and respiratory syndrome virus

- ss enveloped RNA virus
- Persistent infections
- Prolonged viremia
- Transplacental infection
- Target cell is macrophage
- Undergoes constant genetic change
 - Collins et al., 1991, Murtaugh et al., 2005
- \$560 million/year annual industry cost
 - Neumann et al., 2005

Transmission and biosecurity (Pitkin et al., 2009)

Route	Example	Intervention
Genetics	pigs, semen fresh pork	quarantine & test prohibit entry
Fomites	boots, coveralls, containers	disinfection
Personnel	hands	entry protocols
Transport	contaminated trailers	sanitation drying
Insects	mosquitoes, houseflies	screens, insecticides
Airborne	bioaerosols	filtration

2. Aerobiology of PRRSV

- Aerosol transmission of PRRSV is variantdependent.
 - □ Cho et al., 2006 & 2007
- MN-184 (high path) vs. MN-30100 (low path)
 - 1. Viral loads in blood & tissues (p=0.0005)
 - □ 2. Frequency of aerosol shedding (p=0.0005, OR=3.22)
 - 3. Transmissibility via aerosols (p=0.04)

Risk factors associated with airborne PRRSV (Dee et al., 2010)

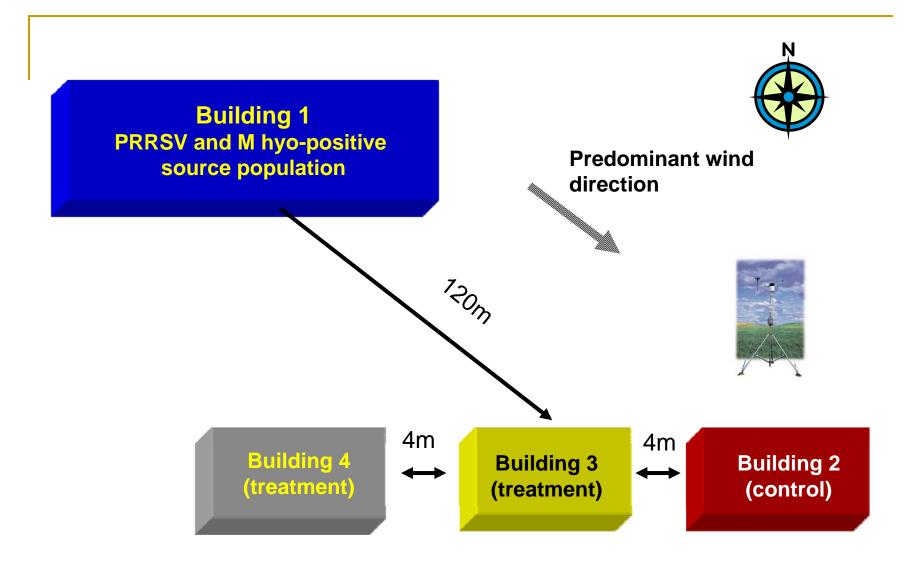
- Neighboring source population actively shedding virus via bioaerosols (p = 0.0002)
- Directional winds moving from a shedding source to an at-risk population (p = 0.0003)
- Winds of low velocity (1.4 to 1.9 m/s) with intermittent gusts (2.8 to 3.7 m/s) (p = 0.002)

Meteorological conditions associated with airborne PRRSV (Dee et al., 2010)

- Cool temperatures: -2.6 to 4.8° C (p = 0.01)
- High relative humidity: 77 to 82% (p = 0.003)
- Rising pressure: 979 to 984 hPa (p = 0.003)
- Low sunlight levels: (p = 0.04)

3. Air filtration: A means to reduce risk

- A French innovation
 - Interesting clinically
 - Lacked controlled data
 - Costly
 - Positive pressure/HEPA filter systems
- Research questions
 - How to test?
 - How to apply?


The Production Region Model (Pitkin et al., 2009, Dee et al., 2010)

Objective

To develop a model of a swine production region that is endemically infected with PRRSV to evaluate routes of transmission and protocols of biosecurity.

Hypothesis

The frequency of PRRSV infections via the aerosol route will be significantly lower in treatment facilities versus controls.

Size and Scope

- Summary:
 - 1438 days of study (June 2006-Nov 2010)
 - 4744 pigs utilized
 - Multiple pathogens tested
 - □ PRRSV 184, 1-26-2, 1-18-2
 - M hyo
 - 3 types of filters evaluated
 - Mechanical
 - Antimicrobial
 - Electrostatic
 - 38,519 samples collected
 - □ Air, personnel, fomites, transport, insects, pigs (sera, nasal)

Airborne transmission data by filter type

Pathogen	Control	MERV 16	MERV 14	Anti- microbial	Electrostatic
PRRSV	28/65	0/39 (p <0.0001)	0/13 (p <0.0001)	0/26 (p <0.0005)	0/13 (p < 0.0001)
M hyo	17/39	0/13 (p <0.0001)	0/13 (p <0.0001)	0/26 (p <0.0001)	0/13 (p < 0.0001)

Application (Spronk et al., 2010, Dee et al., 2010)

Objective:

 To evaluate the efficacy of air filtration for reduction of external PRRSV introduction to large sow herds located in swine dense regions

Project Participants:

□ UMN, SDSU PVC, FVC, SVC

Selection criteria:

- □ <u>></u> 2400 sows
- ≥ 4 external virus introductions over the past 4 years
- \rightarrow 4 pig sites within 4.7 km radius of candidate herd
- Industry standard biosecurity

Duration of study:

4 years

Outcomes measured:

- External virus introduction
- Cost-benefit

o sites of Three 41x120 W-F Barns Two 1,000 head barns

Four 41 x 120 W-F Barns Four 41 x 120 W-F Barns

0 nurs in mid finish on both ends Three 41x120 nurs in mid finish on both ends

Two 41 x 120 W-F Barns Two barn finisher?? Ceylon Hawkeye II wo barn finisher??

20 Nurs in mid-finish on both sides

New 50x200 W-F Barn

36 x 80 Bldg 360 head?

43°31'01.95" N 94°41'12.45" W

Jun 2003

Three Four Barn Sites Three Four-Barn Sites

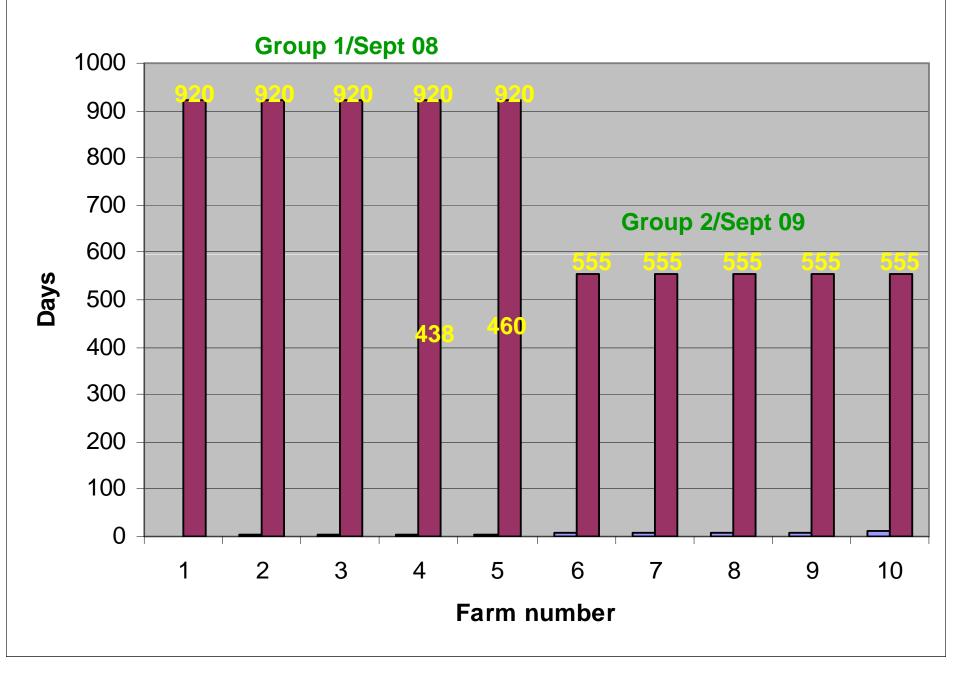
<100 head in outside lot

Eye alt 47162 ft

Google

Attic installation of filter boxes

Photos courtesy of Dr. Spronk


Filter bank

Photos courtesy of Dr. Reicks

Days Post-Filtration

Frequency of infection pre- and post- filtration across the 2 infected filtered herds

BHI	# sites 4.7km	# infections pre-filter (48 months)	infection frequency pre-filter	# infections post-filter (30 months)	infection frequency post-filter
3128	17	7	1 infection every 6.8 months	1	1 infection every 30 months
3240	9	4	1 infection every 12 months	1	1 infection every 30 months

Control herd data (30 months)

- Re-infection has occurred in **28/30** (93%) of non-filtered herds.
- Of the 28 herds infected:
 - □ 17/28 (62%) have experienced 1 new virus introduction
 - □ 7/28 (25%) have experienced 2 new virus introductions
 - □ 4/28 (13%) have experienced **3** new virus introductions
- Re-infection less likely in filtered herds versus non-filtered herds
 (p = 0.0001)

In Closing

- The routes of PRRSV transmission within and between herds are well understood.
- 2. Science-based biosecurity protocols are available to reduce these risks.
- Air filtration is an essential component of an effective biosecurity plan for herds in swine-dense regions.